7.14 UNIVERSAL JFET BIAS CURVE



 1. Tujuan [kembali]

  • Untuk menyelesaikan tugas matakuliah elektronika yang diberikan oleh Bapak Dr. Darwison,M.T. 
  • Mempelajari rangkaian dari Jfet Bias Curve
  • Memahami cara kerja dari Jfet Bias Curve

 2. Alat dan Bahan [kembali]

  • Resistor
    Berfungsi sebagai pembagi, pembatas, dan pengatur arus dalam suatu rangkaian, 

Resistor berfungsi untuk menghambat arus dalam rangkaian listrik. Nilai resistansi dan arus saling berbanding terbalik, sehingga semakin besar nilai resistansi maka nilai arus yang melalui sebuah komponen semakin kecil. Cara menghitung nilai resistansi resistor berdasarkan kode gelang warna:

 


        1. Masukkan angka langsung dari kode warna gelang pertama

      2. Masukkan angka langsung dari kode warna gelang kedua

      3. Masukkan angka langsung dari kode warna gelang ketiga

      4. Masukkan jumlah nol dari warna gelang ke-4 atau pangkatkan angka tersebut dengan              (10^n), merupakan nilai toleransi dari resistor. 

  • Kapasitor

Berfungsi sebagai penyimpan arus atau tegangan listrik

  • Ground
Berfungsi sebagai penghantar arus listrik langsung ke bumi

  • Transistor

    Transistor merupakan sebuah alat semikonduktor yang dapat dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal

  • Kapasitor Polar

  Kapasitor polar adalah kelompok electrolytic terdiri dari kapasitor-kapasitor yang bahan dielektriknya adalah lapisan metal-oksida.




Cara menghitung nilai kapasitor :

1. Masukan 2 angka pertama langsung untuk nilai kapasitor.
2. Angka ke-3 berfungsi sebagai perpangkatan (10^n) nilai kapasitor.
3. Satuan kapasitor dalam piko farad.
4. Huruf terakhir menyatakan nilai toleransi dari kapasitor.


Daftar nilai toleransi kapasitor :
B = 0.10pF
C = 0.25pF
D = 0.5pF
E = 0.5%
F = 1%
G = 2%
H = 3%
J = 5%
K = 10%
M = 20%
Z = + 80% dan -20%

  • Grafik Transfer

    Grafik Transfer digunakan untuk mengamati grafik hubungan antara tegangan dan arus.


  • Probe Tegangan

    Probe Tegangan digunakan untuk mengukur nilai tegangan pada suatu titik.



  • Generator DC

  Generator DC digunakan untuk menghasilkan sinyal DC.




  • Ground

  Grounding berfungsi sebagai penghantar arus listrik langsung ke bumi atau tanah saat terjadi kebocoran isolasi atau percikan api pada konsleting.



3. Dasar Teori [kembali] 

          Karena solusi dc dari konfigurasi FET memerlukan gambar kurva transfer untuk setiap analisis, kurva universal dikembangkan yang dapat digunakan untuk setiap tingkat I DSS dan V P. Kurva universal untuk JFET n-saluran atau MOSFET tipe deplesi (untuk nilai negatif VGSQ).



          Solusi untuk konfigurasi pembagi tegangan. Penskalaan untuk m dan M berasal dari pengembangan matematis yang melibatkan persamaan jaringan dan penskalaan yang dinormalisasi. Uraian selanjutnya tidak akan berkonsentrasi pada mengapa skala m meluas dari 0 ke 5 pada VGS> 0 VP 0 = -0,2 dan skala M berkisar antara 0 hingga 1 pada VGS> 0 VP 0 = 0, tetapi lebih pada bagaimana menggunakan skala yang dihasilkan untuk mendapatkan solusi untuk konfigurasi.


          Penggunaan sumbu m dan M paling baik dijelaskan dengan contoh-contoh yang menggunakan timbangan. Setelah prosedur dipahami dengan jelas, analisis dapat dapat dilakukan dengan cepat, dengan ukuran akurasi yang baik.


Example and problem

Question 1:





 








     Garis bias-diri yang ditentukan oleh Rs diplot dengan menarik garis lurus dari titik asal melalui titik yang ditentukan oleh m - 0,31, seperti yang ditunjukkan pada Gbr. 7.61. Dengan hasil,




Nilai diam dari ID dan VGS dapat ditentukan sebagai berikut 





Question 2



Tentukan nilai diam dari ID dan VGS untuk jaringan.

          Kalkulasikan m menjadi:



          Determinasi VG:

          Temukan M, maka didapat





4. Prosedur Percobaan [kembali]

  • Siapkan komponen rangkaian yang dibutuhkan

  • Rangkai komponen menjadi sebuah rangkaian

  • Lakukan simulasi rangkaian pada proteus

  • Analisis rangkaian yang telah dibuat

 5. Rangkaian Simulasi [kembali]



 6. Video [kembali]

 7. Link Download [kembali]

4.19 DC Biasing-BJTs



 1. Tujuan [kembali]

  • Untuk menyelesaikan tugas matakuliah elektronika yang diberikan oleh Bapak Dr. Darwison,M.T. 
  • Mempelajari materi dari Biasing-BJTs
  • Memahami Aplikasi Praktis dari Biasing-BJTs

 2. Alat dan Bahan [kembali]

  • Resistor
    Berfungsi sebagai pembagi, pembatas, dan pengatur arus dalam suatu rangkaian, 

Resistor berfungsi untuk menghambat arus dalam rangkaian listrik. Nilai resistansi dan arus saling berbanding terbalik, sehingga semakin besar nilai resistansi maka nilai arus yang melalui sebuah komponen semakin kecil. Cara menghitung nilai resistansi resistor berdasarkan kode gelang warna:

 


        1. Masukkan angka langsung dari kode warna gelang pertama

      2. Masukkan angka langsung dari kode warna gelang kedua

      3. Masukkan angka langsung dari kode warna gelang ketiga

      4. Masukkan jumlah nol dari warna gelang ke-4 atau pangkatkan angka tersebut dengan              (10^n), merupakan nilai toleransi dari resistor. 

  • Kapasitor

Berfungsi sebagai penyimpan arus atau tegangan listrik

  • Ground
Berfungsi sebagai penghantar arus listrik langsung ke bumi

  • Transistor

    Transistor merupakan sebuah alat semikonduktor yang dapat dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal

 3. Dasar Teori [kembali]

          Penggunaan Dioda BJT dan Kemampuan Perlindungan saat memindai jaringan yang rumit, sering ditemukan transistor yang digunakan di mana ketiga terminal tidak terhubung dalam jaringan - terutama kabel kolektor. Dalam Dalam kasus seperti itu, kemungkinan besar digunakan sebagai dioda daripada transistor. Poin yang harus dibuat adalah bahwa seseorang tidak boleh berasumsi bahwa setiap transistor BJT dalam suatu jaringan digunakan untuk amplifikasi atau sebagai penyangga di antara tahapan. Jumlah area aplikasi untuk BJT di luar area ini cukup luas. 

 Driver Relai

          Aplikasi ini merupakan kelanjutan dari diskusi yang memperkenalkan dioda tentang bagaimana efek tendangan induktif dapat diminimalkan melalui desain yang tepat. Sebuah transistor digunakan untuk menetapkan arus yang diperlukan untuk memberi energi pada relai di sirkuit kolektor.



Kontrol Cahaya

          Sebuah transistor digunakan sebagai sakelar untuk mengendalikan status "hidup" dan "mati" bola lampu di cabang kolektor jaringan. Ketika sakelar dalam posisi "on", kita memiliki situasi bias tetap di mana tegangan basis-ke-emitor berada pada level 0,7-V, dan arus basis dikontrol oleh resistor R1 dan impedansi input transistor. Arus melalui bohlam kemudian akan menjadi beta kali arus basis, dan bohlam akan menyala.



Mempertahankan Arus Beban Tetap

          Jika kita mengasumsikan bahwa karakteristik sebuah transistor memiliki tampilan ideal         (beta konstan di seluruh) sebuah sumber, yang cukup independen dari beban yang diterapkan, dapat dibangun menggunakan konfigurasi transistor sederhana. Arus basis adalah tetap sehingga tidak masalah di mana pun garis beban berada, arus beban atau kolektor tetap sama.

Tegangan emitor ditentukan oleh:


          Dengan menggunakan Gbr. 4.107, kita dapat menggambarkan peningkatan stabilitas dengan memeriksa kasus di mana I C mungkin mencoba naik karena sejumlah alasan. Hasilnya adalah bahwa IE = IC juga akan naik dan tegangan VRE = IERE akan meningkat. Namun, jika kita mengasumsikan V B tetap (asumsi yang baik asumsi yang baik karena levelnya ditentukan oleh dua resistor tetap dan sumber tegangan), maka tegangan basis-ke-emitor VBE = VB - VRE akan turun.

          

Sistem Alarm dengan CCS

          Sistem alarm dengan sumber arus konstan dari jenis yang baru saja diperkenalkan tampak pada Gbr. 4.108 . Karena bRE = (100)(1 k) = 100 k jauh lebih besar daripada R1 , kita dapat menggunakan pendekatan perkiraan dan menemukan tegangan VR1:


Dan kemudian Tegangan melintasi RE


Dan terakhir, arus pemancar dan kolektor





          Karena arus kolektor adalah arus yang melalui sirkuit, arus 4-mA akan akan tetap cukup konstan untuk sedikit variasi dalam pemuatan jaringan. Perhatikan bahwa arus yang lewat melalui serangkaian elemen sensor dan akhirnya menjadi op-amp yang dirancang untuk membandingkan Tingkat 4-mA dengan tingkat yang ditetapkan sebesar 2 mA.



         Satu karakteristik yang sangat penting dari op-amp khusus ini adalah impedansi input rendah seperti yang ditunjukkan pada Gbr. 4.109c. Fitur ini penting karena kita tidak ingin sirkuit alarm bereaksi terhadap setiap lonjakan tegangan atau turbulensi yang datang ke saluran karena beberapa aksi peralihan eksternal atau kekuatan luar seperti petir.

Gerbang Logika

          Tingkat impedansi di atas yang ditetapkan oleh transistor "on" dan "off" membuatnya relatif mudah untuk memahami pengoperasian gerbang logika. Karena ada dua input ke setiap gerbang, ada empat kemungkinan kombinasi tegangan pada input ke transistor. Keadaan 1, atau "aktif," didefinisikan oleh tegangan tinggi pada terminal basis untuk menghidupkan transistor aktif. Kondisi 0, atau "mati," didefinisikan oleh 0 V pada basis, memastikan bahwa transistor mati. 


\

Operasi Gerbang OR

          Output jika salah satu terminal input telah menerapkan penyalaan tegangan atau jika keduanya dalam keadaan "on". Keadaan 0 hanya ada jika keduanya tidak memiliki keadaan 1 pada terminal input.

Gerbang AND 

          Mengharuskan output menjadi tinggi hanya jika kedua input memiliki a tegangan penyalaan diterapkan. Jika keduanya dalam keadaan "aktif", sebuah ekuivalen hubung singkat dapat digunakan untuk koneksi antara kolektor dan emitor masing-masing transistor, menyediakan jalur langsung dari sumber 5-V yang diterapkan ke output - dengan demikian menetapkan status tinggi, atau 1, pada terminal output. di terminal keluaran.

Indikator Tingkat Tegangan

          Indikator level tegangan meliputi tiga elemen yaitu: transistor, dioda Zener, dan LED. Indikator level tegangan indikator level tegangan adalah jaringan yang relatif sederhana menggunakan LED hijau untuk menunjukkan kapan tegangan sumber mendekati level pemantauan 9 V. Pada Gbr. 4.112, potensiometer adalah diatur untuk menetapkan 5,4 V pada titik yang ditunjukkan. Hasilnya adalah tegangan yang cukup untuk menyalakan kedua Zener 4,7-V dan transistor dan membentuk arus kolektor melalui LED yang cukup besar untuk menyalakan LED hijau.


4. Prosedur Percobaan [kembali]

  • Siapkan komponen rangkaian yang dibutuhkan

  • Rangkai komponen menjadi sebuah rangkaian

  • Lakukan simulasi rangkaian pada proteus

  • Analisis rangkaian yang telah dibuat

 5. Rangkaian simulasi [kembali]

 6. Video [kembali]

 7. Link Download [kembali]

 

BAHAN PRESENTASI 
  MATA KULIAH ELEKTRONIKA 2022

Oleh
Ilham Richard
2210952026


DOSEN PENGAMPU
DR. DARWISON, M.T.

Referensi 

1. Darwison, 2010, ”TEORI, SIMULASI DAN APLIKASI ELEKTRONIKA ”, Jilid 1, ISBN: 978-602-9081-10-7, CV Ferila, Padang

2. Darwison, 2010, ”TEORI, SIMULASI DAN APLIKASI ELEKTRONIKA ”,Jilid 2,  ISBN: 978-602-9081-10-8, CV Ferila, Padang

3. Robert L. Boylestad and Louis Nashelsky, Electronic Devices and Circuit Theory, Pearson, 2013

4. Jimmie J. Cathey, Theory and Problems of Electronic Device and Circuit, McGraw Hill, 2002.

5. Keith Brindley, Starting Electronics, Newness 3rd Edition, 2005

6. Ian R. Sinclair and John Dunton, Practical Electronics Handbook, Newness, 2007.

7. John M. Hughes, Practical Electronics: Components and Techniques, O’Reilly Media, 2016.


JURUSAN TEKNIK ELEKTRO
FAKULTAS TEKNIK
UNIVERSITAS ANDALAS
PADANG
2023


2.13 Diode Application



 1. Tujuan [kembali]

  • Untuk menyelesaikan tugas matakuliah elektronika yang diberikan oleh Bapak Dr. Darwison,M.T. 
  • Mempelajari pemahaman umum Diode Application
  • Mempelajari fungsi Practical Application Battery Charger

 2. Alat dan Bahan [kembali]

  • Resistor
    Berfungsi sebagai pembagi, pembatas, dan pengatur arus dalam suatu rangkaian, 

Resistor berfungsi untuk menghambat arus dalam rangkaian listrik. Nilai resistansi dan arus saling berbanding terbalik, sehingga semakin besar nilai resistansi maka nilai arus yang melalui sebuah komponen semakin kecil. Cara menghitung nilai resistansi resistor berdasarkan kode gelang warna:

 


        1. Masukkan angka langsung dari kode warna gelang pertama

        2. Masukkan angka langsung dari kode warna gelang kedua

        3. Masukkan angka langsung dari kode warna gelang ketiga

        4. Masukkan jumlah nol dari warna gelang ke-4 atau pangkatkan angka tersebut dengan (10^n), merupakan nilai toleransi dari resistor. 

  • Baterai
     Baterai adalah alat yang digunakan untuk menyimpan energi listrik dalam bentuk kimia kemudian diubah menjadi energi listrik untuk memperoleh arus listrik yang diperlukan.

  • Dioda
    Komponen aktif dua kutub yang pada umumnya bersifat semikonduktor, yang memperbolehkan arus listrik mengalir ke satu arah.


  • Switch
    Switch atau saklar adalah suatu komponen yang digunakan untuk memutus dan menyambungkan arus listrik.

  • Ground
Berfungsi sebagai penghantar arus listrik langsung ke bumi

  • Induktor

     Induktor adalah sebuah komponen elektronika pasif yang dapat menyimpan energi pada medan magnet yang ditimbulkan oleh arus listrik yang melintasinya. 

3. Dasar Teori [kembali]

Rektifikasi

          Pengisi daya baterai adalah peralatan umum yang ditemukan di rumah yang dapat digunakan untuk mengisi daya apa pun mulai dari baterai senter kecil hingga baterai timbal-asam laut yang kuat. 


Tampilan luar dan konstruksi internal Pengisi Daya Baterai Manual Sears 6>2 AMP ditunjukkan pada Gbr. 2.128. Perhatikan pada Gbr. 2.128b bahwa trafo menempati sebagian besar ruang internal. Ruang udara tambahan dan lubang-lubang di casing ada untuk memastikan saluran keluar untuk panas yang berkembang karena arus yang dihasilkan.


          Semua bagian penting pengisi daya ditunjukkan dalam skema di Gambar 2.129. Bahwa primer trafo dilintasi langsung oleh tegangan 120 V yang dialirkan dari stopkontak. Sakelar hanya menentukan berapa banyak belitan utama yang akan berada di sirkuit untuk laju pengisian yang dipilih, yang mungkin 6 A atau 2 A. Primer akan sepenuhnya berada di sirkuit dan rasio belitan primer ke sekunder akan berada pada titik tertinggi. saat baterai sedang diisi pada level 2-A. Belokan primer lebih sedikit ada di sirkuit dan rasionya turun saat mengisi daya pada level 6-A.


          Namun, dengan menerapkan lampu depan sebagai beban, arus yang cukup ditarik melalui dioda untuk berperilaku seperti sakelar dan mengubah bentuk gelombang ac menjadi gelombang berdenyut seperti ditunjukkan pada Gbr. 2.130 untuk pengaturan 6-A. Pertama, perhatikan bahwa bentuk gelombang sedikit terdistorsi oleh karakteristik nonlinier transformator dan karakteristik nonlinier dari dioda pada arus rendah. Namun, bentuk gelombangnya tentu saja mendekati apa yang diharapkan ketika kita bandingkan dengan pola teoritis Gbr. 2.129. Nilai puncak ditentukan dari sensitivitas vertikal sebagai

Vpeak = (3,3 divisi) (5 V/divisi) = 16,5 V vs. 18 V pada Gbr. 1.129

Konfigurasi Pelindung

          Dioda digunakan dalam berbagai cara untuk melindungi elemen dan sistem dari tegangan atau arus yang berlebihan, pembalikan polaritas, lengkung, dan korslet, dan masih banyak lagi.

          Pada Gbr. 2.131a, itu sakelar pada rangkaian RL sederhana telah ditutup, dan arus akan naik ke tingkat yang ditentukan oleh tegangan yang diterapkan dan resistor seri R seperti yang ditunjukkan pada plot.

          Pada Gbr. 2.132a, jaringan sederhana di atas mungkin mengendalikan aksi sebuah relai. Ketika sakelar ditutup, koil akan diberi energi, dan tingkat arus kondisi tunak akan didirikan. Namun, ketika sakelar dibuka untuk menghilangkan energi jaringan, kita memiliki masalah yang diperkenalkan di atas karena elektromagnet yang mengendalikan aksi relai akan muncul sebagai koil ke jaringan yang memberi energi. Salah satu cara termurah namun paling efektif untuk melindungi sistem switching adalah dengan menempatkan kapasitor (disebut "snubber") di terminal koil seperti yang ditunjukkan pada Gbr. 2.132b.

          Seringkali resistor tidak muncul karena resistansi internal koil seperti yang ditetapkan oleh banyak lilitan kawat halus. Kadang-kadang, anda mungkin menemukan kapasitor di seberang sakelar seperti yang ditunjukkan pada Gbr. 2.132c.


          Terakhir, dioda sering digunakan sebagai perangkat pelindung untuk situasi seperti di atas. Dalam  Gbr. 2.133, dioda telah ditempatkan secara paralel dengan elemen induktif dari konfigurasi relai. Ketika sakelar dibuka atau sumber tegangan dengan cepat dilepaskan, polaritasnya dari tegangan melintasi koil seperti untuk menghidupkan dioda dan melakukan ke arah ditunjukkan.


          Kadang-kadang, juga dapat ditemukan dioda secara seri dengan terminal kolektor transistor sebagai ditunjukkan pada Gbr. 2.134b. Tindakan transistor normal mengharuskan kolektor menjadi lebih positif dari terminal basis atau emitor untuk membentuk arus kolektor ke arah yang ditunjukkan.


          Seperti yang ditunjukkan pada Gbr. 2.135, dioda sering digunakan pada terminal input sistem seperti op-amp untuk membatasi ayunan tegangan yang diberikan. Untuk level 400-mV, sinyal akan lewat tanpa gangguan ke terminal input op-amp. Namun, jika tegangan melompat ke level 1 V, puncak atas dan bawah akan terpotong sebelum muncul di terminal input op-amp. Setiap tegangan yang terpotong akan muncul di seluruh rangkaian resistor R1.

Asuransi Polaritas

          Ada banyak sistem yang sangat sensitif terhadap polaritas tegangan yang diberikan. Sebagai contoh, pada Gbr. 2.137a, asumsikan untuk saat ini bahwa ada sebuah peralatan yang sangat mahal peralatan yang akan rusak oleh bias yang diterapkan secara tidak benar. Pada Gbr. 2.137b yang benar bias yang diterapkan ditunjukkan di sebelah kiri. Akibatnya, dioda menjadi bias terbalik, tetapi sistem bekerja dengan baik - dioda tidak berpengaruh. Namun, jika polaritas yang salah diterapkan sebagai ditunjukkan pada Gbr. 2.137c, dioda akan menghantarkan dan memastikan bahwa tidak lebih dari 0,7 V akan muncul di seluruh terminal sistem, melindunginya dari tegangan yang berlebihan.


Cadangan Bertenaga Baterai Terkontrol

          Dalam berbagai situasi, sebuah sistem harus memiliki sumber daya cadangan untuk memastikan bahwa sistem akan tetap beroperasi jika terjadi kehilangan daya. Hal ini terutama berlaku untuk sistem keamanan dan sistem pencahayaan yang harus tetap menyala saat listrik mati. Hal ini juga penting ketika sebuah sistem seperti komputer atau radio terputus dari sumber konversi daya ac-ke-dc ke mode portabel untuk bepergian.


Detektor Polaritas

          Melalui penggunaan LED dengan warna yang berbeda, jaringan sederhana Gbr. 2.140 dapat digunakan untuk memeriksa polaritas pada titik mana pun dalam jaringan dc. Ketika polaritas seperti yang ditunjukkan untuk diterapkan 6 V, terminal atas positif, D1 akan melakukan bersama dengan LED1, dan hijau lampu akan menyala.


 Tampilan/Display

          Beberapa masalah utama penggunaan bola lampu listrik pada rambu jalan keluar adalah keterbatasannya seumur hidup. Untuk alasan ini LED sering digunakan untuk memberikan masa pakai yang lebih lama, lebih tinggi tingkat daya tahan, dan tegangan permintaan dan tingkat daya yang lebih rendah. Pada Gbr. 2.141, sebuah jaringan kontrol menentukan kapan lampu EXIT harus menyala. Ketika menyala, semua LED dalam rangkaian akan menyala, dan tanda KELUAR akan menyala penuh.

Mengatur Level Referensi Tegangan 

Dioda dan Zener dapat digunakan untuk mengatur level referensi seperti yang ditunjukkan pada Gbr. 2.142. Jaringan, melalui penggunaan dua dioda dan satu dioda Zener, menyediakan tiga tingkat tegangan yang berbeda.


Mengatur Level Referensi Tegangan

          Dioda dan Zener dapat digunakan untuk mengatur level referensi seperti yang ditunjukkan pada Gbr. 2.142. Jaringan, melalui penggunaan dua dioda dan satu dioda Zener, menyediakan tiga tingkat tegangan.  Menetapkan Tingkat Tegangan yang Tidak Sensitif terhadap Arus Beban Sebagai contoh yang dengan jelas menunjukkan perbedaan antara resistor dan dioda dalam pembagi tegangan dan pertimbangkan situasi.

Regulator AC dan Generator Gelombang Persegi

          Dua Zeners yang saling membelakangi juga dapat digunakan sebagai regulator AC seperti yang ditunjukkan pada Gbr. 2.144a. Untuk sinyal sinusoidal v i rangkaian akan muncul seperti yang ditunjukkan pada Gbr. 2.144b pada saat vi = 10 V.


          Output yang dihasilkan untuk rentang penuh v i diberikan dalam Gbr. 2.144a.


          Jaringan Gbr. 2.144b dapat diperluas menjadi jaringan generator gelombang persegi sederhana (karena aksi kliping) jika sinyal v i dinaikkan menjadi mungkin puncak 50-V dengan Zeners 10-V seperti yang ditunjukkan pada Gbr. 2.145 dengan output yang dihasilkan bentuk gelombang.

4. Prosedur Percobaan [kembali]

  • Siapkan komponen rangkaian yang dibutuhkan

  • Rangkai komponen menjadi sebuah rangkaian

  • Lakukan simulasi rangkaian pada proteus

  • Analisis rangkaian yang telah dibuat

 5. Rangkaian Simulasi [kembali]

 6. Video [kembali]

 7. Link Download [kembali]

[menuju awal]

Laporan akhir 3 modul 2

[KEMBALI KE MENU SEBELUMNYA] DAFTAR ISI 1. Jurnal 2. Alat dan Bahan 3. Rangkaian 4. Prinsip Kerja 5. Video Percoba...